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Heat kernel expansion coefficient: 11. Higher-order operators 

Norman H Barthi 
Fakultat fur Physik, Albert Ludwigs Universitat, Hermann Herder Strasse 3, D-7800 
Freiburg i Br, West Germany 

Received 14 October 1985, in final form 13 May 1986 

Abstract. In this paper we obtain useful relations for calculating the a , l ,Z ,d  asymptotic 
expansion coefficient for an associated heat kernel and elliptical operator of order greater 
than two in d dimensions. In our  main relation we relate the coefficients for two 
commuting elliptical operators and the Q , ~ ~ ~ ) ~ ~  coefficient of their product. We use this 
relation to obtain results (in four dimensions) for the a, coefficient, including total 
divergences, for the fourth-order operator (U2+ E"P,@ + A'"'T',V, + C""', +Z) .  We 
also argue that, for higher-order operators, the coefficients of the loop divergences must 
be slightly altered. We discuss the literature. 

1. Introduction 

In this paper, the second in a series of two, we discuss higher-order elliptical operators 
which have leading terms with more than two derivatives. We develop useful properties 
of the asymptotic expansion coefficient of their associated heat kernel 
K ( x ,  XI, t ;  A )  as t + Of .  In particular, given two elliptical operators A I  and A2 of orders 
pl =2u,  and p2=2vz  respectively for some positive integers u I  and u2 such that 
[ A , ,  A,] = 0 with heat kernel satisfying 

( ~ + A I A , ) K ( x , x f ,  t ;  A , A , ) = O  ( 1 . 1 )  

and with asymptotic expansion for t + O f :  
X 

K ( x ,  x', t ;  A l a , ) -  C u/(x, x'; AlA2)r(2 ' -d"p 
/ = 0  

then, in d dimensions, the a,I , /21d coefficient of (1.2) satisfies 

(1.2) 

(VI+ 4a(1/2)d(X, x; AlAZ) = I ula(l!Z)d(x, x; A , ) +  u2a(l/,,d(x, x; A d }  (1.3) 
for a manifold with or without boundary. When the manifold has a boundary a similar 
relation holds for the 'boundary' coefficients C , ~ , , , ~ ( X ,  x; A I A z ) ,  C , , , ~ , ~ ( X ,  x; A , )  and 

Using this property (1.3) we obtain partial results, in § 3, for the fourth-order 
C(I,Z,d(X, x; A*) .  

operator 

A = { ~ * + E " P . O + A ( " " V . D , + C " C , + Z }  (1.4) 
and a,,, , , ,(A) coefficient (i.e. in d = 4  dimensions). A special case of this operator 
arises at the first-loop level in the general fourth-order theory of gravity (Barth and 
Christensen 1983). 

t Alexander von Humboldt Fellow 
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876 N H Barth 

Operators of order p always appear in the loop expansions of an action S of the 
same order. (Note: by order here we mean the dimensions of an object. A fourth-order 
object has dimensions of l/I4.) Theories built out of higher-order invariants are known 
to have better divergence properties, but probably also various diseases such as negative 
energy states, and non-unitary S matrix (Pais and Uhlenbeck 1950, Stelle 1977, DeWitt 
1965, 1967). However, using power-counting methods, DeWitt (1967) has argued that 
as far as better divergence behaviour is concerned, nothing is to be gained using actions 
of order greater than four. Interest in such actions built out of invariants quadratic 
in the Riemann curvature and its contractions has increased lately for many reasons, 
especially since Stelle (1977) showed that such theories are formally renormalisable. 
Due to a lack of tools, work on such theories in curved space with coordinate space 
methods has been limited. There is hope that when more explicit calculations become 
available, the various diseases can somehow be done away with. Indeed in light of 
recent work by Tomboulis (1989, there is reason to believe that in full curved spacetime 
questions of unitarity must be more carefully answered than otherwise. This paper 
partially develops, in § 3, a necessary expression for the a2 coefficient (in four 
dimensions) of the operator (1.4) which (with E" equal to zero) appears at the first-loop 
level in the general fourth-order theory of gravity (Barth and Christensen 1983). The 
expression for the integral of the a, coefficient is completely solved for. This generalises 
work by Gilkey (1980) and Christensen (1982) and provides an alternative derivation 
of these results to those of Barvinsky and Vilkovisky (1985) and Fradkin and Tseytlin 
(1981, 1982). 

Finally, in § 4, we discuss our results and the literature. 

2. Useful properties 

First we provide some necessary background. Consider some elliptical operator A 
with spectrum { A r ,  c$,} of eigenvalues and eigenfunctions such that the eigenfunctions 
form a complete orthonormal system and solve the eigenvalue problem Ad, = A&. Let 
n be the number of zero modes of the operator and m the number of non-zero modes. 
Now consider the kernel K(x, x', t ;  A) of (1.1). It has the formal solution 

cc 

K(x, x', t ;  A )  = +,(x)C#J,(x') e-'$'. (2.1) 
,=O 

Due to the orthogonality of the eigenfunctions C#Jl we can write 
X 

ddxgl"K(x, x, t ;  A )  = e-''' = Tr e-*'. 
I =O 

Now we define k'( t ,  A )  = Tr J M  ddx g'"K(x, x, t ;  A) where the prime denotes the 
exclusion of the n zero modes. Then as t + O+ we have 

- 2 ddxg"2a;(x, x, A)t'"-d''p 
/ = o  M 

(2.3) 

which defines the coefficients A i ( A ) ,  



Heat kernel expansion coeficient: II 

Recalling the integral representation for the gamma function 

i-x 

= J r ’ - ’  e-‘ d t  
0 

and using the Mellin transform of (2.3) we obtain 

J o  t = n + l  

Defining the zeta function 
X 

5(s ,A . )=  A;’ 
1 = n + l  

then from (2 .5)  we have 

877 

(2.4) 

(2.5) 

(2.7) 

Equation (2.7) allows us to relate the zeta function to the asymptotic expansion 
coefficients in (1.2) and (2.3). Using suitable analytic continuation (Dowker and 
Critchley 1976, Hawking 1977) it is easily shown that 

(2.8) 

where m is the number of non-zero modes of the operator A as mentioned above. 
From (2.6) we have immediately, for some arbitrary positive number k, 

(2.9) 

[(o, A )  = m = A;1/2)d(A) 

5(s, A k )  = i(ks, A )  

A ( l / 2 , d ( A k )  = A(l , , )d (A)  (2.10) 

and therefore together with (2.8) 

where A,(A) = {A;(A) + n } ,  n being the number of zero modes of the operator A. Later 
we show that (2.10) holds for the a ( l 1 2 ) d  coefficients as well. 

Consider now the determinant of the operator A. Formally (although this can be 
made mathematically correct) 

X 

det A =  fl A,  (2.11) 
, = n + l  

which, together with the definition of the zeta function (2.6), gives 

d 
7 - 0  d s  

In det A = -1im - 5(s, A ) .  

Using (2.7) and the fact that 

l i m 1 / r ( s ) = ( s + y s 2 +  . . . )  
s-0 

we obtain 

.) loa d t  tS- ’  k’( t ,  A ) ) .  

(2.12) 

(2.13) 

(2.14) 
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This expression (2.14) has divergent parts. Using (2.3) it is not hard to show that the 
coefficients of the parts diverging as t ‘2“’’p are 

( 2 . 1 5 ~ )  

and for the part diverging as In f the coefficient is 

- A;l,2,d(A). (2.15 b )  

This is already well known for d = 4  dimensions (Hawking 1977). Expression (2.15) 
however is not quite correct and must be slightly modified if it is to be consistent with 
(2.10). This becomes clear when we realise that 

In det A h  = k In det A. (2.16) 

Then from dimensional considerations the logarithmic divergences in (2.16) must be 
related among themselves as 

(2.17) 

This is not consistent with (2.10). The resolution of the difficulty follows if we define 
a new asymptotic expansion coefficient proportional to the old one. That is, we define 

&A) = (2/p)AXA) (2.18) 

where p is the order of the operator A .  This can always be done because f p  is just a 
number which does not affect the asymptotic expansion in any way. (This may, of 
course affect the counterterms however; we return to this in § 4.) When this is done 
then (2.17) becomes 

A; I ,*)  d ( A  1 = kA; 1 ,z i d ( A ) .  

fpkA; i 2 id ( A  1 = k[fpAi 112 1 d ( A  11 (2.19) 

which is consistent with (2.10). 
We are now able to derive our main result. Consider the elliptical operators A ,  

and A2 of orders p ,  = 2u,,  p z  = 2uz respectively such that [ A l ,  A*] = 0 and A, = Ala2 
with spectra {A,: A o =  A I , + * ,  c $ } ,  { A l :  A , ,  d}, { A 2 ,  h z ,  4} .  Then due to the fact that 

(2.20) 

comparison of the logarithmic divergences, together with (2.19) and including the zero 
modes such that 2, = {A; + n}, demands that 

(2.21) 

This result holds true even when the manifold has boundaries provided the asymptotic 
expansion (1.2) is supplemented by ‘boundary’ coefficients cr (Gilkey 1980) such that 
(we now drop  the tilde over the A, coefficients) 

In det A,, = In det A1A2 = {In det A I  +In det A2} 

( 0 1  + ~ 2 ) A i / z i d ( A i A 2 )  = { ~ i A ( 1 / 2 ) d ( A 1 ) +  u2A,,,,,d(A2)}. 

A,(A) = ( j M  ddxg1/2ar (x ,  x, A ) +  jaM dd- ’x  y1’2c,(x, x, A ) )  (2.22) 

where dM is the boundary of M,  and yl” dd-’x  is the invariant surface element with 
y e p  the induced surface metric. (For  details see York (1979) and references therein. 
For recent work with boundaries and higher-order theories of gravity see Barth (1985).) 
From (2.22) it is clear that the cr coefficients are of one order less than the a, coefficients. 
The a ( l , 2 i d  coefficient is always of even order for manifolds of even dimension, and 
odd for manifolds of odd dimension. When d is odd, then the A(,,2,d(A) coefficient 
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is completely determined by the boundary coefficient C(I/Z)d term. (Thus for compact 
manifolds without boundary and  of odd dimension the AlI12)d(A) coefficient is always 
zero.) This shows that even when there are boundaries, it is not possible to construct 
volume invariants of odd order. Thus on dimensional grounds, when d =even 
dimensions, the a(l/2)d and C ( 1 / 2 ) d  coefficients implicit in (2.22) must be independent 
of one another. That is using (2.21) and (2.22) we have 

Notice that on dimensional grounds, the extrinsic curvature K,, must be used to build 
every surface invariant in the c ~ ~ / ~ ) ~  coefficient. Thus setting K,, equal to zero 
everywhere (i.e. working with a flat boundary) makes all the surface contributions to 
the A ( I / Z j d  coefficient vanish. This is all the more clear when working with operators 
whose leading symbols are some power of the metric tensor. The general operator of 
this form is 

A = + N'"!  . . c r 2 ~ - ~  ' V U I V L 1 2 .  . .V, , ,  I +. . . + NalVaI + N } .  (2.24) 

For such operators all available tensors from which the invariants of the a(Il2)d 
coefficients can be built (i.e. the Riemann curvature tensor, its contractions, the tensors 
N'".."' in (2.24) and the use of covariant derivation) of even rank are of even order, 
and all tensors of odd rank are of odd order with one exception. The extrinsic curvature 
tensor K,, is the only tensor of even rank but odd order (it is a first-order object). 
Thus all of the surface invariants in the c( l / , ) d  coefficient must have at least one extrinsic 
curvature tensor, o r  its contraction. This is because the surface invariants (for 1 = even 
number) are of odd order (in fact they are of order (21 - 1) (see below)). Due to this 
( 2 . 2 3 ~ )  holds whether the manifold has a boundary or  not. 

We would also like to draw attention to the fact that unless the operators A ,  and 
A2 commute, it is not in general possible to relate their eigenvalues and  eigenfunctions 
to the eigenvalues and eigenfunctions of the operator formed from their product. That 
is, for non-commuting elliptical operators A ,  and A, one, in general, does not have 
the relations 

A = AlA2 A = Alh: dJ = 4, = 4 2 .  (2.25) 

Finally in this section, we mention the following. Using simple arguments it is 
possible to break up  any operator of the form (2.24) into a trivial and non-trivial part 
depending on which asymptotic coefficient is being calculated. First we observe from 
Gilkey's (1980) lemma 2.2 and from (2.23) that the order of the invariants making up  
an  asymptotic coefficient is independent of the order of the operator. Therefore using 
results for second-order operators of the form (2.24) we immediately have (DeWitt 
1965, Gilkey 1975) 

O( a,) = 21 (2.26) 

(we use the notation O(a, )  to means 'the order of (a , ) ' ) .  From Gilkey's lemma it also 
follows that (2.26) is independent of the dimension of the manifold. Therefore when 
calculating the expansion coefficient a, for an operator of the form (2.24), the terms 
in (2.24) with tensors N ' " . . - p '  of order greater than 21 are uninteresting because they 
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can never be used to build up invariants in the asymptotic coefficient a,. More succinctly 
one has the immediate relationship 

[~ , ( (n )~  + ""1 a2h-l'Vu,. . .V,,,-I +.  . . + N"IV,, + N ) ]  

= [ u , ( ( O ) ~ +  ""1 " ~ ~ - I ' V n i . .  . V , , , - , + .  . .+ ""I a z h - 2 ~ ' V  ~ V n ~ ~ - ~ , ) l *  
(2.27) 

This holds true regardless of the dimension of the manifold 

3. A fourth-order exampole 

We now use (2.23) to obtain some results for a2(A) where A is the fourth-order operator 

A = { 0 2 +  E"V,O+A'""V ,V ,+C"V,+Z}  (3 .1 )  
and the objects E",  A'" ' ) ,  C"  and 2 all commute with each other and with YKE. (see 
notation section in Barth 1987 (referred to as I)) .  Then from (3 .1 )  and relation (2.26), 
together with the commutation relations of the tensors E",  A'"?), C " ,  2 and Y,, just 
mentioned, the general form for a2(A) must be (see also Christensen (1982), Gilkey 

180[ a2(A)] = { r, RoPvf i  RaPys  + r,R,PRuP + r3R2 + r,R,," + r5 Ynp Y e p  + e ,  R E  y:K 

(1980)) 

+ e2RE "E ,  + e3R;,E " + e,E Y;FRIE + e5E KEER,,  + e,E 

+ e 7 E K i E E K i E +  e 8 E K ; E E E ; K  + e 9 E K , K E E ; E  + e l O E K E E ; E K  + e l l E K E k , E E  

+ e 1 2 E K E U E F ; E  + e 1 3 E K i F E K E E  + e,,E"E,E'E, + e 1 5 E K E E A K E  + e16EK; 'AKE 

+ e 1 7 E K A N r ; F  + e,,E"E,A+ e,,E";,A+ e2,E"A,, +e,, E"C,  

+ e 2 2 E K , F Y K P  + ez3EKY,,,' +alA"',,, + a;A," +a;A"'R,, +a;A"'A,, 

+ a ~ A R + a k A 2 + c , C " ; , + ~ , Z }  (3.2) 
where g""A,, =A,  and the real coefficients e , ,  . . . , e23, a i , .  . . , U; ,  c, and z ,  are to be 
determined. The primes above the coefficients a !  etc are there to distinguish them 
from the a2(A) asymptotic expansion coefficient. Then using the expression from I 
for a2( -0 + B"V,  + X )  (namely (4.12)) and the relationship (2.23) we can determine 
many of the coefficients in (3.1). We d o  this by considering the following three cases. 

Case 1 :  A = A , A , = ( - O + B " G , + X ) ( - O + B ' V , + X ) .  The resulting operator is 
of the form (3.1) with 

E" = -2B" 

A ( K F )  = (B"B' -2Xg"' - B";' - B E ; K )  

C"  =(BEB", '+2B"X-B";. '  - B,R" ' -2X iK)  

Z = ( X 2 +  B"X, ,  - X i K ' ) .  

Case 2: A = A1A2 = ( -0 + B " V ,  + X ) (  -0 + Q'V, + Y ) .  The resulting operator is 
of the form ( 3 . 1 )  with 

E " = - ( B " + Q " )  
A("€)  = (;B"Q'+fB'Q" -Xg"' - Yg"')  
C" = ( B " Y + Q " X )  

Z = X Y  
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where, in order to ensure commutivity of the operators A ,  and A, we have required 

Case 3: h = A , A z  = ( -0 + B"C,)( -0 + Q'O,).  The resulting operator is of the 
R,,,,=O=B,,,=Q,,,=X,,= Y,c.  

form (3.1) with 

E "  = - (B"  + Q " )  
A'" ' )  = ( ~ B K Q '  +$BFQ"  - BK, '  - B ~ , K )  

C" = (B,Q",' - Q K , F F  - Q F R X E )  

where, in order to ensure commutivity of the operators A I  and A2 we have required 

B ( K , c ) =  Q < K , F )  

(B,R"' - QKR"' + B',," - + B"Q',, - Q"BF,(C)  = 0. 

These three cases satisfy the requirement that [ A l ,  A,] = 0. Thus comparing invariants 
in the resulting expression (3.2) with (4.12) in I gives straightforwardly the following 
relations: 

case 1: 
1. r ,  = 1 
2. r,= -1 
3. r 3 = 2  
4. r 4 = 6  
5. r 5 =  15 
6. ( -2e ,  -2a i )  = 15 
7. (4e, + U ; )  = -9 
8. (-2e,-al  - c l )  = O  
9. ( -2e4-2a:  -2a; -2c1) = 0 

10. (4e, + 2eI7 + 2e2, + a { + a ;  + c,) = 0 

12. (4e7+2eI6+2aS+2a:) = -Y 
13. (4e ,+2e , ,+a~+2a :+c l )=  -? 
14. (4e9+4e,,+a1+4aA) =? 
15. (4e, ,+2e, ,+4e2,+2a~+c,)  = O  
16. (4ell  +2eI7+2e,,  +2a5) = -15 
17. ( - 8el, - 2eI7 - 8el, - 2e19 -4ak) = -9 
18. ( - 8eI - 8el - 2eI6 - 2 e ,  , - 4ezo - 2e2, - 4 4 )  = 0 
19. ( 1 6 e , , + 4 e I , + 4 e , , + a ~ + a ~ )  = g  
20. ( -8e , , -32eI , -4e , , -4aI , -16a~)=45 
21. (4el6+ 1 6 e , 9 + 8 a & + 3 2 a ~ + 2 c l ) =  -90 
22. (4e ,7+16e , ,+4e , ,+2c1+z , )=0  
23. ( - 2 ~ ;  - 8 ~ ; )  = -30 
24. ( 1 6 a ~ + 6 4 a k + z I )  =90  
25. ( - 2 ~ ;  - 8 ~ i - 2 ~ 1 -  z I )  = -30 
26. e,, = -9 
27. e --E. 

case 2: 
28. e , =  -9 
29. e 1 4 = $  
30. (4e14+ e , , +  e , * )  = 0 

11. ( -2e6-2a;  - 2 ~ 5 - c ~ )  = 15 

2 3 -  4 ,  
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31. ( e , , + 4 e I 8 )  = -4 
32. (e,,+4e,,+ e21)  = 0;  

33. (e,-e,)=O 
34. ( 2 e , , + 2 e 1 5 + e , , + e ~ , ) = 0  
35. ( 2 e I 2 +  1/2el,+2e,,)  =?. 
These equations form 35 independent equations in 36 variables. It is possible to solve 
for many of them. When we d o  this we obtain the results: 

180[a2(A)]  = { 1 RaPva 1'- I R,, 1*+?R2+6R,," + 15 Y,, Y K F  - 15RE", ,  - y R E " E ,  

case 3: 

- 10E " R ; ,  - 5 E 

+ a (  -65 + c,)E";"E,;,  +$( -65 + C,) E";'E,;, + $ ( 5 5  + C ~ ) E * ; ~ E ' , ~  

+$( - 40 + c,) E "E,;', +$( - 80+ ~ 1 )  E +$(75 + ~ 1 )  E " E K E  E , E  

+$( - ~ ~ + C ~ ) E " E ' E , , , + $ ( E " E , ) ' - $ E " E ' A , ,  +5(30-~ l )E" , 'A , .  

-$cl E ,AKp;' - - Y E  "E,A - 15 E ",,A + Y E  "C, - Y E  

- Y E ' Y N r , f  +(20-c1)A,, ," '+ lOA.," - 15AKFR, ,+~A, ,A" '  

- $( 50+ C I )  E " E  ' R K p  + ( - 75 + c 1 )  E 

Y,, 

+ $ A R + ~ A ~ + c , c ~ ~ ,  - 9 o z } .  (3.3) 
We draw attention to the fact that the coefficient e,, equals zero and therefore the 
invariant E " A ; ,  does not appear in (3.3). Equation (3.3),  although as it stands is not 
completely solved, in fact gives enough information to solve for the integral of (3.2). 
When we d o  this we obtain 

1 8 0 [ A 2 ( A ) ] = 5  g " 2 d 4 ~ { ~ R a P Y a / 2 - ~ R , , ~ 2 + ~ R 2 + 1 5 Y , , Y " P - $ R E " ; , - ~ R E " E ,  
M 

+3E"E'R, ,  +$E"; ,EFSE - 7 E K E K i f F  15 - y E " E ' E , ; ,  +$(EKE, )*  

- ~ E ~ ; ~ Y , ,  - I ~ A ~ ' R , ,  +YA"'A,, + Y A R + ~ A ~ - ~ o z } .  
15  - 7 E  " E  'A,, + 15 E - F E  "E,A - 15 E ";,A + F E  "C, 

(3.4) 
Note that group indices are implicit in (3.2)-(3.4). The case of (3.4) with E" equal 
to zero was first obtained by Gilkey (1980). He used methods different from ours here 
and although they are useful, they d o  not lend themselves to finding (3.4) as easily as 
does relation (2.23). 

It is clear that if one more independent equation could be found then (3.3) would 
be completely solved. An obvious question is whether any of the clever methods of 
Gilkey's could be used. Unfortunately they cannot because they are associated with 
the integral of the a, coefficient, something already determined in (3.4). One might 
also suggest an additional 'case 4' to those considered above where 

A = A l A 2 = (  -0 + B"O,  + X ) (  -0 + Q'C,  + Y )  

so that (3 .1)  takes the form 

E " = - ( B " + Q " )  

Y g K F  A'" ' )  = ( ~ B K Q F  + ~ B ' Q K  - B K ; '  - B F , K  - x g ~ c  - 

C" = ( BFQ":F - Q K , F F  - 2 Y , ,  + B" Y + Q " X )  

Z = ( B "  Y.% + X Y  - Y , K K ) .  
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In addition one must require that A ,  and A, commute and therefore demand the 
additional relations: 

B i K . F ) =  Q , I , F )  

(B".,' - QK.?' + BfQ",F - Q'B",, + 2X," - 2 Y , " )  = 0 

( B "  YSK - Q " X , ,  + X,," - Y,,")  = 0. 

This 'case 4' is the most general case possible. However, it turns out that there are no 
tensors B", Q", X and Y such that these restrictions are satisfied and also yield a new 
independent equation. This is easily shown by the fact that any 'new' equation is 
always one incompatible with those already obtained. Put another way, the restrictions 
are so strong that the tensors B", QK, X ,  Y and their derivatives are related such that 
no new invariant combinations not already found in the cases 1-3 occur. For this 
reason case 4 is uninteresting. 

Most other methods used in calculating these asymptotic expansion coefficients 
deal only with the integral of the coefficient and so are not useful to us here. There 
is no ansatz or recursive method like the Schwinger-DeWitt ansatz so useful in the 
case of second-order operators (DeWitt 1965). The method of 'doubling' the manifold 
(Gilkey 1974, McKean and  Signer 1967), while extremely useful for the case of 
second-order operators, is problematic in its application to higher-order operators. If 
we define a new manifold which is the product of two other manifolds such that the 
metric is 

then 

That is, the operator on the full manifold splits into two separate operators each defined 
on one of the two submanifolds. It is then possible to relate the asymptotic expansion 
coefficients for the operators on the submanifolds with those on the full manifold. 
(Note that the operators all commute with each other.) However with higher-order 
operators things are not so convenient. Consider for example the fourth-order case. 
Then we have 

n' = (0 + n) = (cl'+ 2 0  0 + 0). 
M 1 2  1 1 2  2 

(3.6) 

The cross terms do  not allow the operator 0' to split neatly as in the second-order 
case, hence this method does not give us any new information. M 

One might also attempt to obtain new information by considering 

[a2(u4+ e"v,03+ M ( ~ ~ ) v , v , o ' +  ~ ' ~ ~ ~ ) v ~ v ~ o ~ n  + K ( ~ P ~ ~ ) V , T ~ V ~ V ~ ) ]  

(from (2.27) we note that the other terms in this eighth-order operator are uninteresting) 
or still other higher-order operators. Unfortunately this also yields nothing. Indeed 
one can show that all of these sorts of higher-order cases with operators of the form 

{ ( a i k  + eKv,flk-' + M ( ~ ~ ' V , V , O ~ - ? +  v, v, v, 0 k - 3  

+ K'"P" 'C,Cp0,VFCi1 . -4+ .  . .} (3.7) 
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(these are the type produced from operator products such as ( -0 + B"V, + X ) k )  are 
determined by the fourth-order case given in expression (3.2). It is appropriate to 
mention here the work of Gilkey (1980) where, for a specific form of operator of 
arbitrary order and on manifolds of arbitrary dimension, he obtains an  expression for 
the integral of the a, coefficient. In our paper here we have chosen not to add  these 
additional 'degrees of freedom' to the calculation, although inclusion of arbitrary 
dimensions and order operators can be accomplished following Gilkey's example. 

4. Discussion 

In the general fourth-order theory of gravity, with action given by 

S =  I d 4 ~ g " 2 { p ( R - 2 , 2 ) + a R 2 + P R F v R F " } + ~ ~  (4.1) 
M 

the operator 

A =  ( U ~ + A ' " ' ) V , V ,  + cKv, + z )  (4.2) 

appears, in addition to two second-order operators, at the first-loop level (Barth and 
Christensen 1983). Operator (4.2) is a special case of (3.1) and provides at least one 
reason why (3.1) is of interest. We also note that although we assumed [ E " ,  E'] = 0, 
and [ E " ,  A'@'] = 0, etc, in equations (3.1)-(3.4), when we specialise to the case (4.2) 
we obtain the general expression for the a, coefficient of (4.2), even when it is built 
u p  of non-commuting tensors A'@', C" and 2. 

There has been other work on the a, coefficient for higher-order operators (Barvinsky 
and Vilkovisky 1985, Christensen 1982, Fradkin and Tseytlin 1981, 1982, 1985, Gilkey 
1980). As we have mentioned, Gilkey (1980) using means other than those of (2.23) 
obtained A,([?'+ A'") V,V, + C"V, + Z ) .  Deleting terms with E" everywhere in our 
expression (3.4) rederives Gilkey's result. However using (2.23) it has been possible 
to extend these results to the more general case A , ( 0 2 +  E"V,O + A'""V,V, + C"V, + 
2 )  and, to within one unknown a z ( U 2 +  E"V,U +A'""V,V, + C"V, +Z) .  Further- 
more we obtained results for the total divergences in a,(='+ E"V,Cl +A("')VKVF + 
C"V, + Z )  which Gilkey does not. 

In an aside, we note that it is well known that, when the manifold is compact 
without boundary, total divergences lose their importance-at least as far as loop 
corrections are concerned. Naturally when there are boundaries, this is no longer true. 
In  addition, the connection between the a, coefficient and anomalies, which can induce 
total divergences into the action, are at least two reasons why they can be of interest 
and why methods to calculate them are of importance. In this regard we mention that 
the work of Barvinsky and Vilkovisky (19851, as it stands, does not allow one to find 
total divergences in the a, coefficient. As far as we know the method of (2.23) seems 
to be the only way of doing so. 

Fradkin and Tseytlin (1981) claim to have completely solved for the a, coefficient 
for the operator (4.2) including the invariants which can be written as total divergences. 
Disregarding the total divergences A'"" " ~ ,  A,," and C",, for now, we note that their 
expressions are all off by a factor o f f .  Without this factor their results are not consistent 
with (2.10). Considering now the total divergnce terms we obtain, after putting these 
in a form allowing immediate comparison with (3.3) from Fradkin and  Tseytlin (1981) 

(4.3a) 18O[a,(A)] = {. . . -30A"',,, + 15A,," + 180C",,} 
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and from Fradkin and Tseytlin (1982) 

180[a,(A)] = {. . .+60A"',,, + 15A,,"}. (4.36) 

Comparing (4.3) with (3 .3)  we see that there is no agreement. We attribute this 
disagreement to the fact that Fradkin and Tseytlin seem not to require that A I  and A, 
commute with each other as they must for an  expression like (2.23) to be true. In  this 
connection we mention that although we have built upon the papers by Fradkin and  
Tseytlin (1981, 1982), expression (2.23) is not the same as a similar one obtained there. 

Disregarding the factor of two and the total divergences, Fradkin and Tseytlin 
obtain their expressions for the a, coefficient of (4.2) using only second-order operators 
of the general form (-0 + X )  (instead of (-0 + B"V, + X )  as we did in cases 1-3), 
as well as the method of doubling the manifold. We have already said in § 3 that 
doubling the manifold does not seem useful in connection with higher-order operators. 
As far as using (2.23) and only second-order operators of the form (-0 + X )  is 
concerned, when this is done the fourth-order operator obtained is always of the form 
(4.2). Thus deleting the terms e , ,  e, ,  through e23 in (3.2) we obtain the general form 
for a, (02+A'""V,G,+ C"V, + Z ) .  In a similar way, many of the 35 equations in 36 
unknowns must also be deleted. In  fact all that is left of these equations is the subset: 

1 .  r, = 1 
2. r2=-1  
3 .  r3 = +  
4. r., = 6 
5.  r 5 =  15 

7 .  (16aA+64aA+z,)=90 
8. ( - 2 a ~ - 8 a ; - 2 c 1 - z , ) = - 3 0  
9. (16ak+64aA)= 180. 

6. ( - 2aj  - 8 ~ ; )  = -30 

There are no other equations obtainable consistent with (2.23) and using A I  and A2 
of the general form ( -13 + X ) .  We now have nine equations in thirteen unknowns. 
This is a much worse algebraic situation than before when we had 35 equations in 36 
unknowns. Thus we see that when using (2.23) it seems necessary to consider the three 
cases given in § 3, even if one wants to solve only for A , ( O ~ + A ( " ~ ~ V , V ,  + C"V, +z) .  
Therefore § 3 constitutes a new derivation of Gilkey's (1980) results. 

The recent work of Barvinsky and Vilkovisky (1985) obtains an expression for 
A2(132+O'KoP1VKV,Vp + A(KF)VKVF + C"V, + 2 )  which is the most general fourth- 
order operator with leading symbol given by some power of the metric. We note 
immediately (e.g. from the invariants made up  of the Riemann tensor only) that their 
results are not consistent with (2.10). A further comparison between their results and 
our confirms this, and can be easily obtained in the limit of Riemann flat space (so 
that all covariant derivatives commute with each other). Setting E'"g"p' equal to 
in the operator above we can compare their expression with our (3.4). As the calculation 
would be a long and tedious one, we d o  not d o  this for their complete expression but 
instead present only a few of their terms rewritten. When we d o  this we obtain 

180[A,(U2+ E(Kg"p'V,V,VP +A""VkV, + C'V, +2) ]  

= { - 15A"'E,E, +30A"'E,,, -yAE"E,  

-30AE";, +yA, ,A"'+yA'+.  . .}. (4.4) 
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Comparing with (3.4) we detect factor o f f  discrepencies (as we did with the Riemann 
terms). 

Let us now discuss this troublesome factor of 2 .  We believe, at least as far as loop 
corrections are concerned, that Barvinsky and Vilkovinsky (1985) and Fradkin and  
Tseytlin (1981, 1982, 1985) have, in introducing this factor in their algorithms, done 
nothing more than use a slightly different definition for the a2 coefficient (in particular) 
than that of the standard works of Gilkey (1980), Hawking (1977) and  Dowker and  
Critchley (1976) and references therein. That is, they use a definition such that, for 
some positive number k :  

G 2 , d ( A k )  = k d , , , 2 , d ( A )  (4.5) 

where the bars indicate these are the non-standard coefficients. When property (4.5) 
holds it is also necessary to alter the standard definitions for the zeta function as well 
as others (the need for this does not seem to be discussed by Barvinsky and Vilkovinsky 
(1985) and Fradkin and Tseytlin (1981, 1982, 1985)). The new definition for the zeta 
function, for example, is easily found to be 

L T(s ,  A )  =-c - A;" for p = 2v.  (4.6) 
P I  

Only then does the analytically continued value for c (0 ,  A) give results consistent with 
(4.5). This exactly parallels the analysis given in § 2 .  Relating the standard and 
non-standard definitions for the zeta function, we have 

(4.7) 

I t  is then a simple matter to use the integral representations for these two zeta functions 
(see (2.7)) together with (4.7) to relate the standard and non-standard asymptotic 
expansion coefficients. We obtain 

2 
A,( A )  = - A,(  A ) .  

P 
(4.8) 

This is exactly the relation we obtained in (2.18). Apparently, if done properly, using 
the non-standard definition amounts to nothing more than essentially putting in, and 
then taking out, an  extraneous factor in a somewhat complicated way-at least as far 
as loop corrections are concerned. Thus we see that it seems consistency can  be 
maintained dispite non-standard definitions (4.5) for the asymptotic expansion 
coefficients. However to d o  so requires related change in the standard definitions of 
the zeta function and others. We believe in the interest of simplicity, and reducing 
confusion with well established results and procedures already in the literature, it 
would be convenient for conventional definitions to be maintained. However relation 
(4.8) gives the simple relationship between the two asymptotic expansion coefficients, 
and can be used to transform the work of Barvinsky and Vilkovisky (1985) and Fradkin 
and Tseytlin (1981, 1982, 1985) into the standard form. Having said this, we now 
move on. 

Although loop corrections per  se are not the major concern in this paper, we make 
the following observation. By considering higher-order operators we discovered that 
in order to make (2.17) consistent with (2.10) relation (2.18) seemed necessary. 
Apparently, as they stand the divergent parts of In det A given in (2.15) are not consistent 
with (2.10) for higher-order operators. Rather (2.15) is consistent with (4.5). Following 
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(2.18) we introduce an  additional factor p/2 everywhere in (2.15) to obtain the 
coefficients of the divergent parts of In det A in terms of asymptotic expansion 
coefficients consistent with (2.10). We obtain that parts diverging as t'2f-d''p (for 
(21 - d )  < 0) have coefficient 

- p 2  A,(A) 
2(21- d )  

(4.9a) 

and the logarithmically divergent part has coefficient 

- i p A , ( A ) .  (4.96) 

The difference between (4.9) and (2.15) is a factor of p/2. Therefore for second-order 
operators these expressions give exactly the same coefficients of diverging parts. This 
is attractive in light of the fact that loop corrections for second-order operators are 
well established and have been calculated in many different ways, all giving consistent 
results. However, for higher-order operators the actor p/2 becomes non-trivial. It 
seems at first sight that (2.15) and (4.9) will yield different results. This however is 
not so due to the relation (4.8) between the coefficients A, and A,. Let us consider a 
fourth-order gravity example to make this clear. Following Christensen (1982), the 
divergent part of the one-loop effective action is 

(4.10) 

where F,, is a fourth-order operator, and yap and F", are second-order operators 
given by Christensen (1982). In terms of asymptotic expansion coefficients satisfying 
the standard expression (2.10) we have, using (4.9), the coefficient of the logarithmically 
divergent parts of (4.10) 

(4.11) 

whereas for the non-standard asymptotic expansion coefficients satisfying (4.5), we 
use (2.15) and obtain 

(4.12) 

Although (4.10) and (4.11) seem to have non-trivial differences, they are in fact the 
same due to the relation (4.8) between the coefficients A, and A,, and the fact that F,, 
is a fourth-order operator, and yep and F a ,  are both second-order operators. This 
example points to the care that must be exercised when considering higher-order 
operators, if extraneous factors are not to be inadvertently introduced. 

WY,: = t( ln det F,, -In det yo, - 2 In det 

3 - 2A2(F,) + A,(Y,p) + 2A2(F0,)) 

$( - A,(Ft, 1 + A,( yep 1 + 2A,(F", 

Nore Added. While this paper was being refereed an interesting article by Hae Won Lee and Pong You1 
Pac (1986 Phys. Rev. D 33 1012) appeared. We note that here as well, these authors' u2 coefficients satisfy 
(4 .5)  rather than (2.10) .  
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